

APPENDIX B: CHARACTER TABLE SUMMARY

classes	Γ_1	Γ_2	Γ_s	Γ_{s+1}	Γ_m
size	1	1	1	h_{s+1}	h_n
χ_1	1	1	1	1	1
χ_2	1						
.....						
χ_r	1						
χ_{r+1}	n_{r+1}						
.....						
χ_m	n_m						
Order	1	k_2	k_s	k_{s+1}	k_n

(1) $m = \# \text{ conjugacy classes}$ $= \# \text{ irreducible characters}$
(2) $n_i = \deg \chi_i$ (always divides $ G $)
(3) $r = G/G' = \# \text{ linear characters}$
(4) $s = Z(G) = \# \text{ classes of size 1}$
(5) $\sum n_i^2 = G $ [follows from column orthonormality]
(6) $ G = \sum h_i$ [class equation] $h_i = G / \text{centraliser} $ and so divides $ G $

(7) (Column orthonormality)

Distinct columns are orthogonal.

Sum of squares of the moduli down column j is $\frac{|G|}{h_j}$.

(8) (Row orthonormality)

Distinct rows are orthogonal when weighted by the h_j .

Sum of squares along a row (weighted by the h_j) = $|G|$.

(9) Columns corresponding to inverses are conjugate.

(10) The conjugate of an irreducible character is an irreducible character.

(11) If $\Gamma_j = \Gamma_j^{-1}$ then each $\chi_j(\Gamma_j)$ is real.

(12) The linear characters form a group, under multiplication, isomorphic to $|G/H|$.

(13) The number of linear irreducible characters = r .

(14) $\ker \rho_i$ (where ρ_i is a representation for which χ_i is the character) is the union of all conjugacy classes Γ for which $\chi_i(\Gamma) = n_i$.

(15) Every normal subgroup is one of these kernels or the intersection of two or more of these kernels.

(16) Every irreducible character χ of G/H induces an irreducible character of G .

Each conjugacy class Γ in G/H corresponds to one or more classes of G . These classes map to $\chi(\Gamma)$.

(17) $\chi_i(\Gamma_j)$ is a sum of n_i k_j 'th roots of unity.

In particular, if $k_i = 2$ then $\chi_i(\Gamma_j)$ is: ± 1 if $n_i = 1$;

0 or ± 2 if $n_i = 2$;

± 1 or ± 3 if $n_i = 3$.

(18) If π is a permutation character $\pi(\Gamma_j)$ is the number of symbols fixed by each element of Γ_j .

It is usually reducible.

(19) Inducing up from subgroup H to G :

value = **index** of H in G \times **proportion** of class in H \times **average** value of character for those elements in H .

(20) Every character is an integer sum of irreducibles.

If $\chi = \sum c_i \chi_i$ then $\langle \chi | \chi \rangle = \frac{1}{|G|} \sum_j |\chi(\Gamma_j)|^2 = \sum c_i^2$.

and $\langle \chi | \chi_i \rangle = \frac{1}{|G|} \sum_j \chi(\Gamma_j) \overline{\chi_i(\Gamma_j)} = c_i$.

[In particular if $\langle \chi | \chi \rangle = 1$, χ is irreducible and if $\langle \chi | \chi \rangle = 2$, χ is the sum of two distinct irreducible characters.]

